Abstract

A new technique is described for the construction of core-shell microfibers for biomedical applications. Fibrous scaffolds were fabricated by electrospinning, followed by covalent layer-by-layer deposition based on the rapid bioorthogonal reaction between s-tetrazines (Tz) and trans-cyclooctenes (TCOs). Electrospun poly(ε-caprolactone) (PCL) scaffolds were subjected to surface modifications to install tetrazine groups. The scaffolds were iteratively submerged in aqueous solutions of TCO-modified hyaluronic acid (HA-TCO) and tetrazine-modified hyaluronic acid (HA-Tz), resulting in the controlled growth of a cross-linked HA gel around individual microfibers. Integrin-binding motifs were covalently attached to the surface of the microfibers using TCO-conjugated RGD peptide. The scaffolds fostered the attachment and growth of primary porcine vocal fold fibroblasts without a significant induction of the myofibroblast phenotype. Stimulation with transforming growth factor beta (TGF-β) moderately enhanced fibroblast activation, and inhibition of the Rho/ROCK signaling pathway using Y27632 further decreased the expression of myofibroblastic markers. The bioorthogonally assembled scaffolds with a stiff PCL core and a soft HA shell may find application as therapeutic implants for the treatment of vocal fold scarring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.