Abstract

Searching for efficient nonprecious metal-based catalysts toward oxygen evolution reaction (OER) are of significance for seawater electrolysis. Herein, a core–shell-structured hybrid of cobalt phosphide nanowires@NiFe layered double hydroxide nanosheets grown on conductive nickel foam (CoP@NiFe LDH/NF) is prepared by a feasible approach at low temperature. The charming structure can provide numerous phosphide/hydroxide heterogenous interfaces, expose abundant active sites, and boost electron/mass transfer, synergistically enhancing catalytic OER activity. When employed as an electrocatalyst toward the OER, the resultant CoP@NiFe LDH/NF only requires a small overpotential of 287 mV to provide 300 mA/cm2 current density as well as long-time durability in 1.0 mol/L KOH seawater. The regulation of electronic states and surface reconstruction synergistically contribute to highly efficient seawater oxidation. This work provides an opportunity to construct efficient and inexpensive electrocatalysts for hydrogen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call