Abstract

Heterojunction with intrinsic thin layer (HIT) solar cells are still costly due to the use of silicon wafers that contribute to ∼30% of the final module cost. To reduce the costs, thinner wafers can be used but to the detriment of the optical absorption. This loss has to be compensated by an efficient light trapping scheme. In this paper we study HIT devices based on Si nanowire (SiNW) core–shell structures to enhance light absorption. The SiNWs are fabricated by a wet etching technique, and the heterojunction is formed using an optimized low-temperature plasma enhanced chemical vapor deposition (PECVD) process at 200 °C. The solar cells are characterized via carrier lifetime and electron beam induced current (EBIC) measurements to understand their electrical properties at nanoscale. The impact of the SiNW length on the cell performance is also investigated. The solar cells show a good performance reaching average fill factor of 81%, Voc of 0.525 V, and Jsc of 29.27 mA/cm2 giving rise to an average effici...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.