Abstract

AbstractColloidal quantum dots (QDs) are promising building blocks in optoelectronic devices, mainly due to their size/shape/composition‐tunable properties. Core–shell QDs, in particular, offer enhanced stability, mitigated photoluminescence blinking, and suppressed non‐radiative recombination compared to plain QDs, making them highly promising for energy conversion applications such as photovoltaic devices, luminescent solar concentrators, solar‐driven hydrogen production, and light‐emitting diodes. Here, a comprehensive analysis of core–shell QDs in energy conversion technologies is provided. Emerging design strategies are explored and various synthetic methods focusing on optimizing band structure, band alignment, and optical properties are critically explored. Insights into the structure‐property relationship are discussed, highlighting recent advancements and the most effective strategies to enhance energy conversion performance. The review is concluded by addressing key challenges and proposing future research directions, emphasizing the need for rational design, precise synthesis, effective surface engineering, and the integration of machine learning to achieve optimized properties for technological applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.