Abstract

Amino functionalized zirconium-based metal-organic framework (NH2-UiO-66) and zinc-based zeolitic imidazolate framework (ZIF-8) were integrated to develop a core-shell architectured hybrid material (NH2-UiO-66@ZIF-8, NU66@Z8). The morphology and structure evolutions of core-shell NU6@Z8 were investigated by FE-SEM, XRD, FTIR, and XPS. The NU66@Z8 combined with carboxylated multi-walled carbon nanotubes (CMWCNT) was deposited on a glassy carbon electrode (GCE) for fabricating an electrochemical platform towards detecting Pb2+ and Cu2+. The NU66@Z8/CMWCNT/GCE revealed significantly improved electrochemical performance for determination of Pb2+ and Cu2+ compared with the individual components, which can be attributed to the strong adsorption capacity, unique core-shell structure, and large electrochemical active surface area of NU66@Z8/CMWCNT. Under the optimal conditions, the developed sensor exhibited excellent sensing capability with a low limit of detection (Pb2+,1nM; Cu2+, 10nM) and a wide determination range (Pb2+,0.003-70μM; Cu2+, 0.03-50μM). Thesensor showed highselectivity towards common interfering ions and good repeatability. The real sample recoveries of proposed sensor were in the range 95.0-103% for Pb2+ (RSD ≤ 5.3%) and 94.2-106% for Cu2+ (RSD ≤ 5.9%), suggesting that the NU66@Z8/CMWCNT is suitable for examining trace heavy metals in natural environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call