Abstract

The spatial arrangement of heterostructures based on two-dimensional layered materials is important in controlling their electronic and optoelectronic properties. In this contribution, by controlling the reaction kinetics and thus the nucleation and growth sequence of p-type SnS and metallic NbS2, controllable preparation of both SnS@NbS2 core@shell and SnS/NbS2 lateral heterostructures was realized. The SnS@NbS2 core@shell heterostructures were further applied in photodetectors, and interestingly, a negative photoresponse was observed due to the Seebeck effect exerted on the NbS2 shell. Compared with the pure metallic NbS2, the SnS@NbS2 core@shell heterostructures showed a 15 times increased signal-to-noise ratio and much improved photocurrent stability, largely due to the charge and heat transfer between the SnS core and NbS2 shell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call