Abstract

A series of sodium alginate (SA) grafted polymer composite beads were synthesized by a solution free-radical graft polymerization reaction performed in a surface crosslinked alginate bead reactor. The outer surface of the precursor droplet containing reactants including SA, acrylamide (AM), N,N′-methylene-bis-acrylamide (MBA), ammonium persulfate (APS), sepiolite (SP) and gelatin (GE) was instantly crosslinked with Ca2+ ions to form a capsule-like bead when it was dropped into aqueous solution of calcium chloride, and simultaneously the reactants inside the capsule-like “bead reactor” were polymerized in-situ to form new composite beads with crosslinked network structure, abundant functional groups, excellent single or co-adsorption ability and easily separable advantages. The optimal composite bead shows high adsorption capacities of 390.78, 1425.65 and 533.91 mg/g toward Methylene Blue (MB), Basic Fuchsin (BF) and Pb(II), respectively. After adsorption with the composite bead, 99.71% of MB, 99.99% of BF and 99.97% of Pb(II) were removed from original dye or Pb(II) solutions. Moreover, above 99.22% of BF and 95.33% of Pb(II) was co-removed from their binary mixture (BF concentration, 100 mg/L; Pb(II) concentration, 50 mg/L). This paper provides a simple green way to synthesize efficient and recyclable biopolymer-based adsorbents capable of purifying dyes and heavy metal ions in water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call