Abstract

Plasmonic core-satellite nanostructures assembled from simple building blocks have attracted extensive attention since they were reported by the way of DNA-directed assembly in 1998, because of their unique enhanced and synergistic optical properties and widespread potential applications in biosensing, imaging, drug delivery, and diagnostics. In this review, we introduce the synthetic methods of core-satellite nanostructures, emphazisingthe bottom-up synthesis method, including DNA, molecular, protein, peptide, amino acids, metal ion-assisted assembly, electrostatic adsorption assembly, clicked-to-assembly, and in situ deposition. Than we review and discuss their morphology classification, and summarize influencing factors of morphology. This is followed by overviews on optical properties, including localized surface plasmon resonance, surface-enhanced Raman scattering, surface-enhanced fluorescence and quenching, and applications in thebiomedical field. Finally,the challenges and prospects of these kinds of nanostructures are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.