Abstract

Space nuclear power reactors have the advantages of small size, long service lives and high-power densities. As these characteristics, space nuclear power reactors can meet the high-power demands of spacecraft. To safely and reliably perform tasks in space with a space nuclear reactor, the control technology of the space nuclear reactor is significant. To study the core power control of a space nuclear reactor, a nonlinear model for the TOPAZ-II core is established by the lumped parameter method and principle of point reactor modeling. Then, directly based on the core nonlinear model, a fuzzy-PID controller is used to control the core power. Finally, the core power control system is built, and dynamic simulations are carried out with multiple transient conditions. The results show that the fuzzy-PID controller can realize core power control well, and its control effect is better than that of PID controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call