Abstract
For high-precision calculations of rovibrational states of light molecules, it is essential to include non-adiabatic corrections. In the absence of crossings of potential energy surfaces, they can be incorporated in a single surface picture through coordinate-dependent vibrational and rotational reduced masses. We present a compact method for their evaluation and relate in particular the vibrational mass to a well defined nuclear core mass derived from a Mulliken analysis of the electronic density. For the rotational mass we propose a simple, but very effective parametrization. The use of these masses in the nuclear Schrödinger equation yields numerical data for the corrections of a much higher quality than can be obtained with optimized constant masses, typically better than 0.1 cm(-1). We demonstrate the method for H(2), H(2)(+), and singly deuterated isotopologues. Isotopic asymmetry does not present any particular difficulty. Generalization to polyatomic molecules is straightforward.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.