Abstract

Abstract The core mass of galaxy clusters is both an important anchor of the radial mass distribution profile and a probe of structure formation. With thousands of strong lensing galaxy clusters being discovered by current and upcoming surveys, timely, efficient, and accurate core mass estimates are needed. We assess the results of two efficient methods to estimate the core mass of strong lensing clusters: the mass enclosed by the Einstein radius (M(<θ E), where θ E is approximated from arc positions, and a single-halo lens model (M SHM), compared with measurements from publicly available detailed lens models (M DLM) of the same clusters. We use data from the Sloan Giant Arc Survey, the Reionization Lensing Cluster Survey, the Hubble Frontier Fields, and the Cluster Lensing and Supernova Survey with Hubble. We find a scatter of 18.1% (8.2%) with a bias of −7.1% (1.0%) between M corr < θ arcs (M SHM) and M DLM. Last, we compare the statistical uncertainties measured in this work to those from simulations. This work demonstrates the successful application of these methods to observational data. As the effort to efficiently model the mass distribution of strong lensing galaxy clusters continues, we need fast, reliable methods to advance the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call