Abstract

Core-level photoemission, low-energy electron diffraction (LEED), and work-function change measurements have been carried out to study the coverage dependence of Na/Cu(110) at room temperature. The results of LEED and work-function measurements are qualitatively similar to most other investigations of alkali-metal adsorption on fcc(110) metal surfaces. With LEED, we observed an alkali-metal-induced (1\ifmmode\times\else\texttimes\fi{}2) reconstruction at intermediate coverage. We have performed a simple calculation to account for the work-function differences between Na/fcc(110) and Na/fcc(111) metal surfaces. The comparison of coverage-dependent core-level binding-energy shifts between Na/Cu(110) and Na/Cu(111) reveals that a low-coverage plateau in the curve of binding energy vs Na coverage for Na/Cu(110) is associated with the Na-induced reconstruction, and can be accounted for within a localized picture of the reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.