Abstract

First-principles molecular orbital calculations using model clusters are made in order to reproduce and interpret experimental electron-energy-loss near-edge structure and near-edge x-ray absorption fine structure of MgO at Mg K, ${L}_{2,3}$ and O K edges. Ground-state calculations using a model cluster composed of 125 atoms and by a band-structure method are in good agreement, but they do not reproduce the experimental spectra satisfactory. They are well reproduced only by the cluster calculations for the Slater transition state, where a half-electron is removed from a core orbital and placed into the lowest unoccupied molecular orbital. The core-hole effect is therefore essential for theoretical reproduction of the spectral shapes. A large supercell is required to reproduce the experimental spectra when one uses a band-structure method. The origin of peaks appearing in the experimental spectra is interpreted in terms of orbital interactions using overlap-population diagrams. Some features of the spectra at different edges are pointed out to have common origins. Experimental spectra are aligned accordingly. The transition energies and qualitative features of experimental spectra are found to be reproduced even using a smaller cluster composed of 27 atoms, although some of fine structure is missing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.