Abstract

In ecosystem engineering research, the contribution of microbial cooperation to ecosystem function has been emphasized. Fungi are one of the predominant decomposers in composting, but thus far, less attention has been given to fungal than to bacterial cooperation. Therefore, network and cohesion analyses were combined to reveal the correlation between fungal cooperation and organic matter (OM) degradation in ten composting piles. Positive cohesion, reflecting the cooperation degree, was positively linked to the degradation rate of OM. From the community perspective, core species (i.e., Candida tropicalis, Issatchenkia orientails, Kazachstania exigua, and Dipodascus australiensis) with high occurrence frequency and abundance were the key in regulating positive cohesion. These species were highly relevant to functional genera associated with OM degradation in both fungal and bacterial domains. Therefore, focusing on these core fungal species might be an appropriate strategy for targeted regulation of functional microbes and promotion of degradation rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.