Abstract

We report the development and benchmark of multireference algebraic diagrammatic construction theory (MR-ADC) for the simulations of core-excited states and X-ray absorption spectra (XAS). Our work features an implementation that incorporates core-valence separation into the strict and extended second-order MR-ADC approximations (MR-ADC(2) and MR-ADC(2)-X), providing efficient access to high-energy excited states without including inner-shell orbitals in the active space. Benchmark results on a set of small molecules indicate that at equilibrium geometries, the accuracy of MR-ADC is similar to that of single-reference ADC theory when static correlation effects are not important. In this case, MR-ADC(2)-X performs similarly to single- and multireference coupled cluster methods in reproducing the experimental XAS peak spacings. We demonstrate the potential of MR-ADC for chemical systems with multiconfigurational electronic structure by calculating the K-edge XAS spectrum of the ozone molecule with a multireference character in its ground electronic state and the dissociation curve of core-excited molecular nitrogen. For ozone, the MR-ADC results agree well with the data from experimental and previous multireference studies of ozone XAS, in contrast to the results of single-reference methods, which underestimate relative peak energies and intensities. The MR-ADC methods also predict the correct shape of the core-excited nitrogen potential energy curve, and are in good agreement with accurate calculations using driven similarity renormalization group approaches. These findings suggest that MR-ADC(2) and MR-ADC(2)-X are promising methods for the XAS simulations of multireference systems and pave the way for their efficient computer implementation and applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call