Abstract

The Al 2p and Br 3d inner-shell photoelectron spectra of aluminum tribromide monomer and dimer vapor were measured at 90 and 95 eV photon energy, respectively, to determine the core electron binding energies of the atoms in the two molecular species. While AlBr 3 has three identical Br atoms, Al 2Br 6 exhibits four terminal and two bridging Br atoms. The species are identified by their distinct valence photoelectron spectra. Comparison of the observed Al 2p 1/2 and Al 2p 3/2 electron binding energies of AlBr 3 with those of Al 2Br 6 shows that there is a chemical shift of (0.15 ± 0.03) eV to lower energy in the dimer. In Al 2Br 6, an assignment is proposed in which the Br 3d 3/2 and Br 3d 5/2 binding energies of terminal Br atoms are (1.18 ± 0.03) eV lower than those of bridging Br atoms. This assignment assumes that both types of Br atoms have similar cross-sections for ionization. With this result, the Br 3d 3/2 and Br 3d 5/2 binding energies of Br atoms in AlBr 3 are (0.81 ± 0.03) eV lower than those of bridging Br atoms of the dimer but (0.37 ± 0.03) eV higher than those of terminal Br atoms of the dimer. The obtained chemical shifts are considered in terms of the binding relations and electron density distributions in both molecules. Chemical shifts that are larger than a few hundred millielectron volts, as observed in the Al 2Br 6/AlBr 3 system, offer potential to study the dissociation dynamics of the dimer in a femtosecond visible or ultraviolet-pump/XUV-probe experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call