Abstract
High-entropy alloys (HEAs) are known to have four core effects leading to superior properties over traditional alloys. In this paper, we investigate an additional core effect, local atomic configuration, due to inherent variations of local chemical composition at the nanoscale. The stacking fault and twin formation energies of AlxCoCrFeNi HEAs, calculated with density functional theory methods, show large variations and even negative energies due ro the local atomic configurations. A design principle is proposed to predict the mechanical properties of the HEAs. The effect of temperature on stacking fault energy is also determined, which is consistent with experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.