Abstract

Some years ago it was decided that a European curriculum should be developed for medical physicists professionally engaged in the support of clinical diagnostic imaging departments. With this in mind, EFOMP (European Federation of Organisations for Medical Physics) in association with ESR (European Society of Radiology) nominated an expert working group. This curriculum is now to hand. The curriculum is intended to promote best patient care in radiology departments through the harmonization of education and training of medical physicists to a high standard in diagnostic radiology. It is recommended that a medical physicist working in a radiology department should have an advanced level of professional expertise in X-ray imaging, and additionally, depending on local availability, should acquire knowledge and competencies in overseeing ultrasound imaging, nuclear medicine, and MRI technology. By demonstrating training to a standardized curriculum, medical physicists throughout Europe will enhance their mobility, while maintaining local high standards of medical physics expertise. This document also provides the basis for improved implementation of articles in the European medical exposure directives related to the medical physics expert. The curriculum is divided into three main sections: The first deals with general competencies in the principles of medical physics. The second section describes specific knowledge and skills required for a medical physicist (medical physics expert) to operate clinically in a department of diagnostic radiology. The final section outlines research skills that are also considered to be necessary and appropriate competencies in a career as medical physicist.

Highlights

  • The medical physicist in radiology is essential for enabling the practice of safe, state-of-the-art medical imaging

  • The core curriculum supports the harmonization of education and training of European medical physicists in radiology, it may help to improve their mobility within Europe, and it provides the basis for improved implementation of articles in European medical exposures directives that are related to the medical physics expert

  • The core curriculum aims at bringing the medical physicist in radiology up to the level of a qualified medical physicist

Read more

Summary

Introduction

The medical physicist in radiology is essential for enabling the practice of safe, state-of-the-art medical imaging. Medical physicists in radiology are members of the multidisciplinary clinical teams that are responsible for radiology services to patients. Their role is to provide critical scientific input on the physical processes and technology that underpin the whole radiology service. The medical physicists in radiology design and develop the framework of medical imaging, image processing, image distribution, image storage, radiation dosimetry, quality assurance of the imaging equipment, information and communication technology (ICT) aspects of the imaging process, and radiation protection of the patient and operator. The medical physicists in radiology provide expert advice on the development, implementation, and improvement of imaging techniques and processes. General principles of risk management and safety in health care 9.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call