Abstract

H-type four-armed star block copolymers with hydroxyl-terminated polybutadiene as hydrophobic sections and poly(methacrylic acid) as hydrophilic fragments were synthesized through atom transform radical polymerization and the follow-up acidolysis, named PMAA2- b-HTPB- b-PMAA2. The core crosslinking reaction was conducted by ultraviolet light irradiation. 1H nuclear magnetic resonance, Fourier transform infrared, size exclusion chromatography, and thermal gravimetric analysis were adopted to confirm the chemical structure of the resulting copolymers. The effect of the ultraviolet light crosslinking on the physicochemical properties of the block copolymer micelles was investigated by fluorescent spectrometry, ultraviolet transmittance, dynamic light scattering, and transmission electron microscope measurements. The results showed that the crosslinking resulted in formation of the stable copolymer micelles and change in the physicochemical parameters, for example, lower critical micelle concentration and smaller micellar size than the uncrosslinked one. Drug loading and in vitro drug release disclosed that the crosslinked copolymer micelles had enhanced drug loading capacity and encapsulation efficiency, less drug leakage, and thus smaller harm to the normal cells but better therapy effect than the uncrosslinked counterpart by the aid of the pH-induced paclitaxel release. The copolymer micelles exhibited pH-dependent cytotoxicity, and therefore, they might be a promising drug target release carrier in biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call