Abstract

The stimulus-response of metal nanoclusters is crucial to their applications in catalysis and bio-clinics, etc. However, its mechanistic origin has not been well studied. Herein, the mechanism of the AuI PPh3 Cl-induced size-conversion from [Au6 (DPPP)4 ]2+ to [Au8 (DPPP)4 Cl2 ]2+ (DPPP is short for 1,3-bis(diphenylphosphino)propane) is theoretically investigated with density functional theory (DFT) calculations. The optimal size-growth pathway, and the key structural parameters were elucidated. The Au-P bond dissociation steps are key to the size-growth, the easiness of which was determined by the charge density of the metallic core of the cluster precursors (i.e., "core charge density"). This study sheds light on the inherent structure-reactivity relationships during the size-conversion, and will benefit the deep understanding on the kinetics of more complex systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.