Abstract

Core-flow tests with a 3000 mPas fuel oil in a 5 cm test facility have revealed important information on the amplitudes and lengths of waves at the oil/water interface. The wavelengths vary considerably with water fraction and oil velocity. Moreover, the flow in the water annulus is turbulent. A previously developed theoretical model for steady core-annular flow in pipes has been extended by incorporating the effect of turbulence in the water film surrounding the oil core. The adapted model predicts the pressure-gradient increase with oil velocity correctly, provided that actual wave amplitudes and wavelengths observed during these tests are used as input data. The possible contribution of inertial effects is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.