Abstract

Several pyrene-based polyphenylene dendrimers (PYPPDs) with different peripheral chromophores (PCs) are synthesized and characterized. Deep blue emissions solely from the core are observed for all of them in photoluminescence spectra due to good steric shielding of the core and highly efficient surface-to-core Förster resonant energy transfers (FRETs). Device performances are found in good correlation with the energy gaps between the work function of the electrodes and the frontier molecular orbital (FMO) levels of the PCs. Pure blue emission, luminance as high as 3700 cd m(-2) with Commission Internationale de l'Éclairage 1931 (CIE(xy)) = (0.16, 0.21), and a peak current efficiency of 0.52 cd A(-1) at CIE(xy) = (0.17, 0.20) are achieved. These dendrimers are among the best dendritic systems so far for fluorescent blue light-emitting materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.