Abstract
Cordyceps is a parasitic fungus and has long been used as a traditional Chinese medicine to treat illnesses, promote longevity, increase athletic power, and relieve exhaustion and cancer. In this study, we reveal the mechanisms underlying apoptosis induced by Cordyceps pruinosa butanol fraction (CPBF) in the human cervical adenocarcinoma cell line, HeLa. Proliferation and apoptosis of cells were examined by MTT assay, DNA fragmentation, phosphatidyl serine distribution assay, Western blot analysis, and immunocytochemistry. To determine the association between CPBF related apoptosis and ROS, electron spin resonance (ESR) trapping experiments were used. CPBF inhibited proliferation and induced apoptosis in HeLa cells in a dose-dependent manner using a MTT assay, DNA fragmentation, and a phosphatidyl serine distribution assay. Western blot analysis showed that apoptosis in HeLa cells was caspase-3- and -9-dependent. Proteolytic cleavage of PARP and the release of cytochrome c from the mitochondria into the cytosol were significantly increased and the Bcl-2/Bax protein ratio was decreased. Apoptosis induced by CPBF was not prevented by various antioxidants. These results indicate that apoptotic effects of CPBF on HeLa cells are mediated by mitochondria-dependent death-signaling pathway independent of reactive oxygen species, suggesting that CPBF might be effective as an anti-proliferative agent for cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.