Abstract

Cordyceps belongs to a genus of acormycete fungi and is known to exhibit various pharmacological effects. The aim of this study was to investigate the effect of Cordyceps species on the proliferation of vascular smooth muscle cells (VSMC) and their underlying molecular mechanism. A cell proliferation assay showed that Cordyceps bassiana ethanol extract (CBEE) significantly inhibited VSMC proliferation. In addition, neointimal formation was significantly reduced by treatment with CBEE in the carotid artery of balloon-injured rats. We also investigated the effects of CBEE on the extracellular signal-regulated kinase (ERK) signal pathway. Western blot analysis revealed increased ERK 1/2 phosphorylation in VSMCs treated with CBEE. Pretreatment with U0126 completely abrogated CBEE-induced ERK 1/2 phosphorylation. In conclusion, CBEE exhibited anti-proliferative properties that affected VSMCs through the ERK1/2 MAPK signaling pathway. Our data may elucidate the inhibitory mechanism of this natural product.

Highlights

  • Atherosclerosis is a disease characterized by thickening of the inner portion of the artery walls [1]

  • Cordyceps bassiana ethanol extract (CBEE) inhibited vascular smooth muscle cells (VSMC) proliferation To confirm the effect of CBEE on VSMC anti-proliferation, cells were cultured for 24 h in complete medium containing 10 % FBS at various concentrations of CBEE (0 ~ 4 μg/ml)

  • Anti-proliferative of Cordyceps species on VSMC To identify the anti-proliferative effects of other Cordyceps species, VSMC were cultured for 3 days in complete medium containing 10 % FBS with three Cordyceps species: CBEE, CMBF, and Cordyceps pruinosa methanol extract (CPME)

Read more

Summary

Introduction

Atherosclerosis is a disease characterized by thickening of the inner portion of the artery walls [1]. One of the main pathological characteristics of this disease is the proliferation of vascular smooth muscle cells (VSMC). Recent studies have demonstrated a close relationship between restenosis and VSMC proliferation in the intimal layer due to accumulation of cells and extracellular matrix [2]. Cordyceps belongs to a genus of acormycete fungi that includes about 400 species [3]. Representative Cordyceps species are C. sinensis and C. militaris, which are have been used as traditional medicine for various diseases in Asian countries. These exhibit various pharmacological effects including anti-inflammatory, antioxidative, antidiabetic, and anticancer properties [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.