Abstract

Glioblastoma is one of the malignant tumors with poor prognosis and no effective treatment is available at present. To study the effect of cordycepin combined with temozolomide on glioblastoma, we explored the effect of the combination based on network pharmacology and biological verification. It was found that the drug combination significantly inhibited the cell growth, proliferation, migration and invasion of LN-229 cells. Drug combination inhibited epithelial-mesenchymal transition (EMT) by up-regulating the expression of E-cadherin and suppressing the expression of N-cadherin, Zeb1 and Twist1. Through network pharmacology, we further explored the molecular mechanism of drug combination against glioblastoma, and 36 drug-disease common targets were screened. The GO biological process analysis included 44 items (P < 0.01), which mainly involved the regulation of apoptosis, cell proliferation, cell migration, etc. The enrichment analysis of KEGG pathways included 28 pathways (P < 0.05), and the first four pathways were "MicroRNA in cancer, Proteoglycans in cancer, Pathways in cancer and PI3K-AKT signaling pathway". We detected the expression of important genes in the pathways and PPI network, and the results showed that the drug combination down-regulated NFKB1, MYC, MMP-9, MCL1, CTNNB1, and up-regulated PDCD4. Cordycepin combined with temozolomide may down-regulate MYC through "MicroRNA in cancer, Proteoglycans in cancer, Pathways in cancer and PI3K-AKT signaling pathway", which in turn regulate the expression of MCL1, CTNNB1, MMP9, PDCD4, thus regulating cell proliferation, migration and apoptosis in glioblastoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call