Abstract

A refined thermodynamic model of H2O and CO2 bearing cordierite based on recent data on volatile incorporation into cordierite (Thompson et al. in Contrib Mineral Petrol 142:107–118, 2001; Harley and Carrington in J Petrol 42:1595–1620, 2001) reflects non-ideality of channel H2O and CO2 mixing. The dependence of cordierite H2O and CO2 contents on P, T and equilibrium fluid composition has been calculated for the range 600–800°C and 200–800 MPa. It has been used for establishing thermodynamic conditions of cordierite formation and the following retrograde P–T paths of cordierite rocks from many localities. Estimates of the H2O and CO2 activities have shown that cordierites in granites, pegmatites and high-pressure granulites were formed in fluid-saturated conditions and wide range of H2O/CO2 relations. Very low cordierite H2O contents in many migmatites may be caused not only by fluid-undersaturated conditions at rock formation and H2O leakage on retrograde P–T paths but also by the presence of additional volatile components like CH4 and N2. The pressure dependence of cordierite-bearing mineral equilibria on fluid H2O/CO2 relations has been evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.