Abstract

Cord factor (trehalose 6,6′-dimycolate, TDM) is the major lipid in the outer membrane of Corynebacteria and Mycobacteria. Although its role is well recognized in the immune response phenomena, its membrane biophysical properties remained largely unexplored and TDM has often been described as a detergent. We purified the main components of the outer membrane from Corynebacterium glutamicum and analyzed their membrane forming properties. In mixture with endogenous cardiolipin, but not alone, the spontaneous hydration of TDM produces liposomes. As a pure component, TDM formed vesicles only by the detergent dialysis method. Perdeuterated cardiolipin–TDM mixtures were shown by deuterium nuclear magnetic resonance (NMR) to exhibit a gel to liquid crystalline phase transition over a 273–295K temperature range, for cells grown at 303K, and thus to be in a liquid crystalline state at physiological temperature. Molecular dynamics simulations of hydrated TDM bilayers provided the trehalose average orientation and conformation, the chain order parameters, the area per lipid and the bilayer thickness which was confirmed by electron microscopy. Finally the Porin A–Porin H ion channel from the Corynebacterial outer membrane was reconstituted in TDM liposomes. With properly mycoloylated proteins, it manifested the typical voltage dependent ion channel properties of an outer membrane porin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.