Abstract
BackgroundThe native articular cartilage lacks the ability to heal. Currently, ex vivo expanded chondrocytes or bone marrow-derived mesenchymal stem cells are used to regenerate the damaged cartilage. With unlimited self-renewal ability and multipotency, human induced pluripotent stem cells (hiPSCs) have been highlighted as a new replacement cell source for cartilage repair. Still, further research is needed on cartilage regeneration using cord blood mononuclear cell-derived hiPSCs (CBMC-hiPSCs).MethodsHuman iPSCs were generated from CBMCs using the Sendai virus. The characterization of CBMC-hiPSCs was performed by various assays. Embryonic bodies (EBs) were obtained using CBMC-hiPSCs, and outgrowth cells were induced by plating the EBs onto a gelatin-coated plate. Expanded outgrowth cells were detached and dissociated for chondrogenic differentiation. Outgrowth cells were differentiated into chondrogenic lineage with pellet culture. Chondrogenic pellets were maintained for 30 days. The quality of chondrogenic pellets was evaluated using various staining and genetic analysis of cartilage-specific markers.ResultsReprogramming was successfully done using CBMCs. CBMC-hiPSCs (n = 3) showed high pluripotency and normal karyotype. Chondrogenic pellets were generated from the outgrowth cells derived from CBMC-hiPSC EBs. The generated chondrogenic pellets showed high expression of chondrogenic genetic markers such as ACAN, COMP, COL2A1, and SOX9. The production of extracellular matrix (ECM) proteins was confirmed by safranin O, alcian blue and toluidine blue staining. Expression of collagen type II and aggrecan was detected in the accumulated ECM by immunohistological staining. Chondrogenic pellets showed low expression of fibrotic and hypertrophic cartilage marker, collagen type I and X.ConclusionsThis study reveals the potential of CBMC-hiPSCs as a promising candidate for cartilage regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Stem Cell Research & Therapy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.