Abstract

AbstractA novel algorithm, CorClass, that integrates association rule mining with classification, is presented. It first discovers all correlated association rules (adapting a technique by Morishita and Sese) and then applies the discovered rule sets to classify unseen data. The key advantage of CorClass, as compared to other techniques for associative classification, is that CorClass directly finds the associations rules for classification by employing a branch-and-bound algorithm. Previous techniques (such as CBA [1] and CMAR [2]) first discover all association rules satisfying a minimum support and confidence threshold and then post-process them to retain the best rules.CorClass is experimentally evaluated and compared to existing associative classification algorithms such as CBA [1], CMAR [2] and rule induction algorithms such as Ripper [3], PART [4] and C4.5 [5].KeywordsAssociation RuleCorrelation MeasureCombination StrategyRule DiscoveryDecision ListThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.