Abstract

In this review we assess the state of knowledge for the coralline algae of the Mediterranean Sea, a group of calcareous seaweeds imperfectly known and considered highly vulnerable to long-term climate change. Corallines have occurred in the Mediterranean area for approximately 140 My and are well represented in the subsequent fossil record; for some species currently common the fossil documentation dates back to the Oligocene, with a major role in the sedimentary record of some areas. Some Mediterranean corallines are key ecosystem engineers that produce or consolidate biogenic habitats (e.g., coralligenous concretions, Lithophyllum byssoides rims, rims of articulated corallines, maerl/rhodolith beds). Although bioconstructions built by corallines exist virtually in every sea, in the Mediterranean they reach a particularly high spatial and bathymetric extent (coralligenous concretions alone are estimated to exceed 2,700 km2 in surface). Overall, composition, dynamics and responses to human disturbances of coralline-dominated communities have been well studied; except for a few species, however, the biology of Mediterranean corallines is poorly known. In terms of diversity, 60 species of corallines are currently reported from the Mediterranean. This number, however, is based on morphological assessments and recent studies incorporating molecular data suggest that the correct estimate is probably much higher. The responses of Mediterranean corallines to climate change have been the subject of several recent studies that documented their tolerance/sensitivity to elevated temperatures and pCO2. These investigations have focused on a few species and should be extended to a wider taxonomic set. Phylogeography, genomics, transcriptomics, and associated microbiomes are fields in which the information for Mediterranean corallines is very limited. We suggest that future work on Mediterranean corallines should be based on a multidisciplinary perspective combining different approaches, and that it should consist of large-scale efforts by scientists based both in western and eastern Mediterranean areas.

Highlights

  • IntroductionThe Mediterranean is the largest (2,969,000 km2) and deepest (average 1,460 m, maximum 5,267 m) enclosed sea on Earth (Coll et al, 2010)

  • The Mediterranean is the largest (2,969,000 km2) and deepest enclosed sea on Earth (Coll et al, 2010)

  • These predictions are supported by climatological data: the average maximum summer seawater temperature has risen by 1◦C in 20 years in some areas of the western Mediterranean (Marbà and Duarte, 2010) and a 0.4◦C warming per decade since 1986 was reported for the entire Mediterranean Sea by Sakalli (2017)

Read more

Summary

Introduction

The Mediterranean is the largest (2,969,000 km2) and deepest (average 1,460 m, maximum 5,267 m) enclosed sea on Earth (Coll et al, 2010) It represents only 0.82% in surface area and 0.32% in volume of the world oceans (Bianchi and Morri, 2000), it is a well-known hotspot of marine biodiversity, with not

Objectives
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.