Abstract

Existing distributed asynchronous graph processing systems employ checkpointing to capture globally consistent snapshots and rollback all machines to most recent checkpoint to recover from machine failures. In this paper we argue that recovery in distributed asynchronous graph processing does not require the entire execution state to be rolled back to a globally consistent state due to the relaxed asynchronous execution semantics. We define the properties required in the recovered state for it to be usable for correct asynchronous processing and develop CoRAL, a lightweight checkpointing and recovery algorithm. First, this algorithm carries out confined recovery that only rolls back graph execution states of the failed machines to affect recovery. Second, it relies upon lightweight checkpoints that capture locally consistent snapshots with a reduced peak network bandwidth requirement. Our experiments using real-world graphs show that our technique recovers from failures and finishes processing 1.5x to 3.2x faster compared to the traditional asynchronous checkpointing and recovery mechanism when failures impact 1 to 6 machines of a 16 machine cluster. Moreover, capturing locally consistent snapshots significantly reduces intermittent high peak bandwidth usage required to save the snapshots -- the average reduction in 99th percentile bandwidth ranges from 22% to 51% while 1 to 6 snapshot replicas are being maintained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.