Abstract

The traditional application for quantitative structure-property/activity relationships (QSPRs/QSARs) in the fields of thermodynamics, toxicology or drug design is predicting the impact of molecular features using data on the measurable characteristics of substances. However, it is often necessary to evaluate the influence of various exposure conditions and environmental factors, besides the molecular structure. Different enzyme-driven processes lead to the accumulation of metal ions by the worms. Heavy metals are sequestered in these organisms without being released back into the soil. In this study, we propose a novel approach for modeling the absorption of heavy metals, such as mercury and cobalt by worms. The models are based on optimal descriptors calculated for the so-called quasi-SMILES, which incorporate strings of codes reflecting experimental conditions. We modeled the impact on the levels of proteins, hydrocarbons, and lipids in an earthworm's body caused by different combinations of concentrations of heavy metals and exposure time observed over two months of exposure with a measurement interval of 15days.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.