Abstract

In this paper, we proposed a passive method for copy-move region duplication detection using dyadic wavelet transform (DyWT). DyWT is better than discrete wavelet transform (DWT) for data analysis as it is shift invariant. Initially we decompose the input image into approximation (LL1) and detail (HH1) sub-bands. Then LL1 and HH1 sub-bands are divided into overlapping sub blocks and find the similarity between the blocks. In LL1 sub-band the copied and moved blocks have high similarity rate than the HH1 sub-band, this is just because, there is noise inconsistency in the moved blocks. Then we sort the LL1 sub-band blocks pair based on high similarity and in HH1 blocks are sorted based on high dissimilarity. Then we apply threshold to get the copied moved blocks. Here we also applied some post processing operations to check the robustness of our method and we get the satisfactory results to validate the copy move forgery detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.