Abstract

The ruminants, as the main group of livestock, have been extensively studied in terms of their physiology, endocrinology, biochemistry, genetics, and nutrition. Despite the wide geographic distribution and habitat diversity of animals in this group, their ecology and evolution remain poorly understood. In this study, we analyzed the gene copy number, selection, and ecological and evolutionary processes that have affected the evolution of major histocompatibility complex (MHC) genes across ruminant lineages based on available genomic data. The 51 species analyzed represented all six families of ruminants. Our finding indicated that the architecture of the MHC region is conserved in ruminants, but with variable copy numbers of MHC-I, MHC-IIA, and MHC-IIB genes. No lineage-specific gene duplication was observed in the MHC genes. The phylogenetic generalized least squares regression (PGLS) model revealed association between ecological and biological factors (habitat and lifespan) and gene duplication in DQA and DQB, but not in DRB. The selection pressure of DQA and DQB were related with lifespan, diet, and the ratio of genetic repeat elements. These results suggest that the MHC evolution in ruminants, including copy number and selection, has been influenced by genetic repeat elements, pathogen exposure risk, and intrinsic cost of possessing multiple MHC genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call