Abstract

Recently, users and news followers across websites face many fabricated images. Moreover, it goes far beyond that to the point of defaming or imprisoning a person. Hence, image authentication has become a significant issue. One of the most common tampering techniques is copy-move. Keypoint-based methods are considered as an effective method for detecting copy-move forgeries. In such methods, the feature extraction process is followed by applying a clustering technique to group spatially close keypoints. Most clustering techniques highly depend on the existence of a specific threshold to terminate the clustering. Determination of the most suitable threshold requires a huge amount of experiments. In this article, a copy-move forgery detection method is proposed. The proposed method is based on automatic estimation of the clustering threshold. The cutoff threshold of hierarchical clustering is estimated automatically based on clustering evaluation measures. Experimental results tested on various datasets show that the proposed method outperforms other relevant state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.