Abstract

Copy-choice recombination efficiently reshuffles genetic markers in retroviruses. In vivo, the folding of the genomic RNA is controlled by the nucleocapsid protein (NC). We show that binding of NC onto the acceptor RNA molecule is sufficient to enhance recombination, providing evidence for a mechanism where the structure of the acceptor template determines the template switch. NC as well as another RNA chaperone (StpA) converts recombination into a widespread process no longer restricted to rare hot spots, an effect maximized when both the NC and the reverse transcriptase come from HIV-1. These data suggest that RNA chaperones confer a higher genetic flexibility to retroviruses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.