Abstract

Large spring floods in the Québec region exhibit correlated peakflow, duration and volume. Consequently, traditional univariate hydrological frequency analyses must be complemented by multivariate probabilistic assessment to provide a meaningful design flood level as requested in hydrological engineering (based on return period evaluation of a single quantity of interest). In this paper we study 47years of a peak/volume dataset for the Romaine River with a parametric copula model. The margins are modeled with a normal or gamma distribution and the dependence is depicted through a parametric family of copulas (Arch 12 or Arch 14). Parameter joint inference and model selection are performed under the Bayesian paradigm. This approach enlightens specific features of interest for hydrological engineering: (i) cross correlation between margin parameters are stronger than expected , (ii) marginal distributions cannot be forgotten in the model selection process and (iii) special attention must be addressed to model validation as far as extreme values are of concern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.