Abstract

Abstract Multivariate GARCH (MGARCH) models are usually estimated under multivariate normality. In this paper, for non-elliptically distributed financial returns, we propose copula-based multivariate GARCH (C-MGARCH) model with uncorrelated dependent errors, which are generated through a linear combination of dependent random variables. The dependence structure is controlled by a copula function. Our new C-MGARCH model nests a conventional MGARCH model as a special case. The aim of this paper is to model MGARCH for non-normal multivariate distributions using copulas. We model the conditional correlation (by MGARCH) and the remaining dependence (by a copula) separately and simultaneously. We apply this idea to three MGARCH models, namely, the dynamic conditional correlation (DCC) model of Engle [Engle, R.F., 2002. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business and Economic Statistics 20, 339–350], the varying correlation (VC) model of Tse and Tsui [Tse, Y.K., Tsui, A.K., 2002. A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations. Journal of Business and Economic Statistics 20, 351–362], and the BEKK model of Engle and Kroner [Engle, R.F., Kroner, K.F., 1995. Multivariate simultaneous generalized ARCH. Econometric Theory 11, 122–150]. Empirical analysis with three foreign exchange rates indicates that the C-MGARCH models outperform DCC, VC, and BEKK in terms of in-sample model selection and out-of-sample multivariate density forecast, and in terms of these criteria the choice of copula functions is more important than the choice of the volatility models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.