Abstract

AbstractAccurate and reliable assessment of wind energy potential has important implication to the wind energy industry. Most previous studies on wind energy assessment focused solely on wind speed, whereas the dependence of wind energy on wind direction was much less considered and documented. In this paper, a copula‐based method is proposed to better characterize the direction‐related wind energy potential at six typical sites in Hong Kong. The joint probability density function (JPDF) of wind speed and wind direction is constructed by a series of copula models. It shows that Frank copula has the best performance to fit the JPDF at hilltop and offshore sites while Gumbel copula outperforms other models at urban sites. The derived JPDFs are applied to estimate the direction‐related wind power density at the considered sites. The obtained maximum direction‐related wind energy density varies from 41.3 W/m2 at an urban site to 507.9 W/m2 at a hilltop site. These outcomes are expected to facilitate accurate micro‐site selection of wind turbines, thereby improving the economic benefits of wind farms in Hong Kong. Meanwhile, the developed copula‐based method provides useful references for further investigations regarding direction‐related wind energy assessments at various terrain regions. Notably, the proposed copula‐based method can also be applied to characterize the direction‐related wind energy potential somewhere other than Hong Kong.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call