Abstract

BackgroundEvodia Rutaecarpa-processed Coptidis Rhizoma (ECR) is a traditional Chinese medicine for the treatment of ulcerative colitis (UC) in China. However, the mechanisms underlying the ECR processing are not elucidated. PurposeCoptidis Rhizoma (CR) regulates the gut microbiota in the treatment of gastrointestinal diseases. This study explored the mechanism of action of ECR before and after processing in UC in view of the regulation of gut microecology. Study DesignA preclinical experimental investigation was performed using a mouse model of UC to examine the regulatory effect of ECR and its mechanisms through gut microbiota analysis and metabolomic assays. MethodsMice received 4% dextran sulfate sodium to establish a UC model and treated with ECR and CR. Colonic histopathology and inflammatory changes were observed. Gut microbiota was analyzed using 16 s rRNA sequencing. Transplants of Lactobacillus reuteri were used to explore the correlation between ECR processing and the gut microbiota. The expression of mucin-2, Lgr5, and PCNA in colonic epithelial cells was measured using immunofluorescence. Wnt3a and β-catenin levels were detected by western blotting. The metabolites in the colon tissue were analyzed using a targeted energy metabolomic assay. The effect of energy metabolite α-ketoglutarate (α-KG) on L. reuteri growth and UC were verified in mice. ResultsECR improved the effects on UC in mice compared to CR, including alleviating colonic injury and inflammation, and modulating gut microbiota by increasing L. reuteri level. L. reuteri dose-dependently alleviated colonic injury, increased mucin-2 level, and promoted colonic epithelial regeneration by increasing Lgr5 and PCNA expression. This was consistent with the results before and after ECR processing. L. reuteri promoted epithelial regeneration by upregulating Wnt/β-catenin pathway. Moreover, ECR increased metabolites levels (especially α-KG) to promote energy metabolism in the colon tissue compared to CR. α-KG treatment increased L. reuteri level and alleviated mucosal damage in UC mice. It promoted L. reuteri growth by increasing the energy metabolic status by enhancing α-KG dehydrogenase activity. ConclusionECR processing improves the therapeutic effects of UC via the α-KG–L. reuteri–epithelial regeneration axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call