Abstract
It is known that the class of all graphs not containing a graph H as an induced subgraph is cop-bounded if and only if H is a forest whose every component is a path [4]. In this paper, we characterize all sets H of graphs with bounded diameter, such that H-free graphs are cop-bounded. This, in particular, gives a characterization of cop-bounded classes of graphs defined by a finite set of connected graphs as forbidden induced subgraphs. Furthermore, we extend our characterization to the case of cop-bounded classes of graphs defined by a set H of forbidden graphs such that the components of members of H have bounded diameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.