Abstract

The main objective of integrative biorefinery platforms is to propose efficient green methodologies addressed to obtain high-value compounds with low emissions through biochemical conversions. This work first screened the capacity of various oleaginous yeast to cosynthesize high-value biomolecules such as lipids and carotenoids. Selected strains were evaluated for their ability to coproduce such biocompounds in the waste-based media of agro-food (brewer’s spent grain, pasta processing waste and bakery waste). Carbon and nitrogen source feedstock was obtained through enzymatic hydrolysis of the agro-food waste, where up to 80% of total sugar/starch conversion was obtained. Then, the profitability of the bioprocess for microbial oil (MO) and carotenoids production by Sporobolomyces roseus CFGU-S005 was estimated via simulation using SuperPro Designer®. Results showed the benefits of establishing optimum equipment scheduling by identifying bottlenecks to increase profitability. Sensitivity analysis demonstrated the impact of MO price and batch throughput on process economics. A profitable process was achieved with a MO batch throughput of 3.7 kg/batch (ROI 31%, payback time 3.13 years). The results revealed areas that require further improvement to achieve a sustainable and competitive process for the microbial production of carotenoids and lipids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.