Abstract

There is a growing concern about the simultaneous presence in the environment of different kinds of pollutants, because of the possible synergic or additive effects of chemical mixtures on ecosystems. Chlorpyrifos (CPF) is an organophosphate insecticide extensively used in agricultural practices. The anionic surfactant sodium lauryl ether sulphate (SLES) is the main component of several commercial products, including foaming agents used in underground mechanised excavation. Both compounds are produced and sold in high amounts worldwide and can be found in the environment as soil contaminants. The persistence of SLES and CPF in agricultural soils and their possible effects on the natural microbial community was evaluated in microcosms. The experimental set consisted of soil samples containing the autochthonous microbial community and treated with only SLES (70mg/kg), only CPF (2mg/kg) or with a mix of both compounds. Control microcosms (without the contaminants) were also performed. Soil samples were collected over the experimental period (0, 7, 14, 21 and 28days) and analysed for CPF, SLES and the main metabolite of CPF (3, 5, 6-trichloropyridinol, TCP). The half-life time (DT50) of each parent compound was estimated in all experimental conditions. At the same time, the abundance, activity and structure of the microbial community were also evaluated. The results showed that the co-presence of SLES and CPF did not substantially affect their persistence in soil (DT50 of 11 and 9days with co-presence and 13 and 10days, respectively, when alone); however, in the presence of SLES, a higher amount of the metabolite TCP was found. Interestingly, some differences were found in the bacterial community structure, abundance and activity among the various conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.