Abstract

Controlled-release pesticide formulations have emerged as a promising approach towards sustainable pest control. Herein, an environment-friendly formulation of insecticide chlorantraniliprole (CAP) was fabricated through a simple approach of coprecipitation-based synchronous encapsulation by chitosan (CTS), with carrier-pesticide interaction mechanism and release behavior investigated. The resulting CAP/CTS controlled-release formulation (CCF) showed a good loading content of 28.1% and a high encapsulation efficiency of 75.6%. Instrument determination in combination with molecular dynamics (MD) simulations displayed that the primary interactions between CAP and CTS were physical adsorption and complicated hydrogen (H)-bonds, which formed dominantly between NH in amides [or nitrogen (N) in ring structures] of CAP and hydroxyl (or amino) groups of CTS, as well as oxygen (O) in CAP with hydrogen in CTS or H2 O molecules. The in vitro release tests exhibited obvious pH/temperature sensitivity, with release dynamics following the first-order or Ritger-Peppas model. As the temperature increased, the CAP release process of the Ritger-Peppas model changed from Case-II to anomalous transport, and ultimately to a Fickian diffusion mechanism. The control effect against Plutella xylostella larvae also was evaluated by toxicity tests, where comparable efficacy of CCF to the commercial suspension concentrate was obtained. The innovative, easy-to-prepare CCF can be used as a formulation with obvious pH/temperature sensitivity and good efficacy on target pests. This work contributes to the development of efficient and safe pesticide delivery systems, especially using the natural polymer materials as carriers. © 2023 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.