Abstract

Structured catalysts based on open-cell metallic foams coated by a catalytic film offer a great potential for intensification and optimization of catalytic processes. Here, we demonstrated the feasibility of the electrodeposition to synthesize in situ and quick Rh/Mg/Al hydrotalcite-type (HT) syngas catalyst precursors with controlled composition, morphology and thickness around 5 to 20 μm on the surface of FeCrAlloy foams using a two-compartment flow electrochemical cell. After calcination at 900 °C, catalytic coatings with properties similar to those of conventional co-precipitated HT-derived catalysts were identified by synchrotron nano-XRF/XRD tomography and HRTEM. The resulting structured catalysts, therefore, merged the properties of both HT-derived catalysts and open-cell foams, namely, thermally stable nano MgO- and spinel-type phases where Rh was dispersed and stabilized against sintering, and high mass and heat transfer. Moreover, the development of a MgAl2O4 thin film in the support-coating interface, by chemical reaction between Mg2+ from the coating and Al3+ from the support during calcination, increased the catalyst adhesion. Consequently, active and stable performance was obtained under harsh reaction conditions in the catalytic partial oxidation of CH4 to syngas as a model reaction. Even in the catalysts operating under severe reaction conditions for about 50 h, the coating was stable and Rh metallic nanoparticles around 2 nm were still well dispersed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.