Abstract

Copper-promoted direct carbonylation of unactivated sp3 C-H and aromatic sp2 C-H bonds of amides was developed using nitromethane as a novel carbonyl source. The sp3 C-H functionalization showed high site-selectivity by favoring the C-H bonds of α-methyl groups. The sp2 C-H carbonylation featured high regioselectivity and good functional group compatibility. Kinetic isotope effect studies indicated that the sp3 C-H bond breaking step is reversible, whereas the sp2 C-H bond cleavage is an irreversible but not the rate-determining step. Control experiments showed that a nitromethyl intermediate should be involved in the present reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.