Abstract

Copper (Cu) is considered to be an indispensable microelement for plants. Excessive Cu, however, is toxic and disturbs several processes in the plant. The present study addressed the effects of ionic Cu (2.0 µM and 8.0 µM) on mitosis, the microtubule cytoskeleton, and DNA in root tip cells of Allium cepa var. agrogarum L. to better understand Cu toxicity on plant root systems. The results indicated that Cu accumulated in roots and that root growth was inhibited dramatically in Cu treatment groups. Chromosomal aberrations (for example, C-mitosis, chromosome bridges, chromosome stickiness, and micronucleus) were observed, and the mitotic index decreased during Cu treatments at different concentrations. Microtubules were one of the target sites of Cu toxicity in root tip meristematic cells, and Cu exposure substantially impaired microtubule arrangements. The content of α-tubulin decreased following 36 h of exposure to 2.0 µM or 8.0 µM of Cu in comparison with the control group. Copper increased DNA damage and suppressed cell cycle progression. The above toxic effects became more serious with increasing Cu concentration and prolonged exposure time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.