Abstract
Truncated and mutated amyloid-β (Aβ) peptides are models for systematic study-in homogeneous preparations-of the molecular origins of metal ion effects on Aβ aggregation rates, types of aggregate structures formed, and cytotoxicity. The 3D geometry of bis-histidine imidazole coordination of Cu(II) in fibrils of the nonapetide acetyl-Aβ(13-21)H14A has been determined by powder (14) N electron spin echo envelope modulation (ESEEM) spectroscopy. The method of simulation of the anisotropic combination modulation is described and benchmarked for a Cu(II) -bis-cis-imidazole complex of known structure. The revealed bis-cis coordination mode, and the mutual orientation of the imidazole rings, for Cu(II) in Ac-Aβ(13-21)H14A fibrils are consistent with the proposed β-sheet structural model and pairwise peptide interaction with Cu(II) , with an alternating [-metal-vacancy-]n pattern, along the N-terminal edge. Metal coordination does not significantly distort the intra-β-strand peptide interactions, which provides a possible explanation for the acceleration of Ac-Aβ(13-21)H14A fibrillization by Cu(II) , through stabilization of the associated state and low-reorganization integration of β-strand peptide pair precursors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.