Abstract

AbstractCuI‐based coordination polymers with 1, 2‐ethanedithiol, 3, 6‐dioxa‐1, 8‐octanedithiol and 3‐oxa‐1, 5‐pentanedinitrile as respectively μ‐S, S′ and μ‐N, N′ bridging ligands have been prepared by reaction of CuI with the appropriate alkane derivative in acetonitrile. [Cu(HSCH2CH2SH)2]I (1) contains 44 cationic nets, [(CuI)2(HSCH2CH2OCH2CH2OCH2CH2SH)] (2) neutral layers in which stairlike CuI double chains are linked by dithiol spacers. In contrast to these 2D polymers, [CuI(NCCH2CH2OCH2CH2CN)] (3) and [(CuI)4(NCCH2CH2OCH2CH2CN)2] (4) both contain infinite chains with respectively (CuI)2 rings and distorted (CuI)4 cubes as building units. Solvothermal reaction of CuI with the thiacrown ether 1, 4, 10‐trithia‐15‐crown‐5 (1, 4, 10TT15C5) in acetonitrile affords the lamellar coordination polymer [(CuI)3(1, 4, 10TT15C5)] (7) in which copper atoms of individual CuI double chains are bridged in a μ‐S1, S4 manner. The third sulphur atom S10 of the thiacrown ether coordinates a copper(I) atom from a parallel chain to generate a 2D network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.