Abstract

Copper(I) and copper(II) complexes possessing a series of related ligands with pyridyl-containing donors have been investigated. The ligands are tris(2-pyridylmethyl)amine (tmpa), bis[(2-pyridyl)methyl]-2-(2-pyridyl)ethylamine (pmea), bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine (pmap), and tris[2-(2-pyridyl)ethyl]amine (tepa). The crystal structures of the protonated ligand H(tepa)ClO(4), the copper(I) complexes [Cu(pmea)]PF(6) (1b-PF(6)), [Cu(pmap)]PF(6) (1c-PF(6)), and copper(II) complexes [Cu(pmea)Cl]ClO(4).H(2)O (2b-ClO(4).H(2)O), [Cu(pmap)Cl]ClO(4).H(2)O (2c-ClO(4).H(2)O), [Cu(pmap)Cl]ClO(4) (2c-ClO(4)), and [Cu(pmea)F](2)(PF(6))(2) (3b-PF(6)) were determined. Crystal data: H(tepa)ClO(4), formula C(21)H(25)ClN(4)O(4), triclinic space group P1, Z = 2, a = 10.386(2) A, b = 10.723(2) A, c = 11.663(2) A, alpha = 108.77(3) degrees, beta = 113.81(3) degrees, gamma = 90.39(3) degrees; 1b-PF(6), formula C(19)H(20)CuF(6)N(4)P, orthorhombic space group Pbca, Z = 8, a = 14.413(3) A, b = 16.043(3) A, c = 18.288(4) A, alpha = beta = gamma = 90 degrees; (1c-PF(6)), formula C(20)H(22)CuF(6)N(4)P, orthorhombic space group Pbca, Z = 8, a = 13.306(3) A, b = 16.936(3) A, c = 19.163(4) A, alpha = beta = gamma = 90 degrees; 2b-ClO(4).H(2)O, formula C(19)H(22)Cl(2)CuN(4)O(5), triclinic space group P1, Z = 4, a = 11.967(2) A, b = 12.445(3) A, c = 15.668(3) A, alpha = 84.65(3) degrees, beta = 68.57(3) degrees, gamma = 87.33(3) degrees; 2c-ClO(4).H(2)O, formula C(20)H(24)Cl(2)CuN(4)O(5), monoclinic space group P2(1)/c, Z = 4, a = 11.2927(5) A, b = 13.2389(4) A, c = 15.0939(8) A, alpha = gamma = 90 degrees, beta = 97.397(2) degrees; 2c-ClO(4), formula C(20)H(22)Cl(2)CuN(4)O(4), monoclinic space group P2(1)/c, Z = 4, a = 8.7682(4) A, b = 18.4968(10) A, c = 13.2575(8) A, alpha = gamma = 90 degrees, beta = 94.219(4) degrees; 3b-PF(6), formula [C(19)H(20)CuF(7)N(4)P](2), monoclinic space group P2(1)/n, Z = 2, a = 11.620(5) A, b = 12.752(5) A, c = 15.424(6) A, alpha = gamma = 90 degrees, beta = 109.56(3) degrees. The oxidation of the copper(I) complexes with dioxygen was studied. [Cu(tmpa)(CH(3)CN)](+) (1a) reacts with dioxygen to form a dinuclear peroxo complex that is stable at low temperatures. In contrast, only a very labile peroxo complex was observed spectroscopically when 1b was reacted with dioxygen at low temperatures using stopped-flow kinetic techniques. No dioxygen adduct was detected spectroscopically during the oxidation of 1c, and 1d was found to be unreactive toward dioxygen. Reaction of dioxygen with 1a-PF(6), 1b-PF(6), and 1c-PF(6) at ambient temperatures leads to fluoride-bridged dinuclear copper(II) complexes as products. All copper(II) complexes were characterized by UV-vis, EPR, and electrochemical measurements. The results manifest the dramatic effects of ligand variations and particularly chelate ring size on structure and reactivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call